0=-16t^2+150t+162

Simple and best practice solution for 0=-16t^2+150t+162 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 0=-16t^2+150t+162 equation:



0=-16t^2+150t+162
We move all terms to the left:
0-(-16t^2+150t+162)=0
We add all the numbers together, and all the variables
-(-16t^2+150t+162)=0
We get rid of parentheses
16t^2-150t-162=0
a = 16; b = -150; c = -162;
Δ = b2-4ac
Δ = -1502-4·16·(-162)
Δ = 32868
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{32868}=\sqrt{36*913}=\sqrt{36}*\sqrt{913}=6\sqrt{913}$
$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-150)-6\sqrt{913}}{2*16}=\frac{150-6\sqrt{913}}{32} $
$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-150)+6\sqrt{913}}{2*16}=\frac{150+6\sqrt{913}}{32} $

See similar equations:

| 46/x=0.92 | | (-5/8)+v=(-1/4) | | 39-7x=-4(7x+)=4 | | -5/8+v=-1/4 | | -18=x-4-8x | | 5d-8=-33 | | 4(x÷2)=-6x+-92 | | 2x-18.1=x+2.9 | | 3/4t+1/3(21-t)=11 | | x+13+x=35 | | 87-4a=5+6 | | -5t=-43 | | 9(y-4)=-10(y+2,1/3 | | 2.4(1.8+3.5x)+x=24.53 | | 5x-14=8x÷4 | | 8x+9x-88=44-5x | | 4x+5(-4/5x+1)=20 | | 12x+x=4550 | | x-6/9=2/3 | | 10x+45=15x+30 | | 4y^2-3=0 | | 5x−15=−65 | | 15=2.5x-3 | | 1x+4-15=-6 | | -12=-8x-8-4 | | -9y+39=-15 | | x-46/9=32/3 | | 8x+4x-19=38-7x | | -4-7(1-2v)=101 | | w=1.2*102 | | d-6π=-π | | -2=1+6x+3 |

Equations solver categories